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The thermal effects for a compressible viscous flow in a capillary have been 
calculated by solving the equation of energy, where a parabolic profile is 
assumed for the axial flow velocity. It is shown that, in general, the temperature 
changes are small (a few millikelvins), consistent with the current assumption of 
an isothermal flow, except in the case of a critical, i.e., very compressible, fluid 
where the cooling can be substantial. This effect is demonstrated numerically on 
the basis of a flow of ethylene in nearly critical circumstances. 
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1. I N T R O D U C T I O N  

In a recent paper E1 ], a description of a "Compressible Laminar Flow in 
a Capillary" has been given, based on the three hydrodynamical equations 
of change, i.e., the equation of continuity, equation of motion, and equa- 
tion of energy, and on an extensive set of conditions. One of these condi- 
tions states that the flow can be considered to be isothermal, implying that 
the energy equation can be ignored when solving the equation of motion. 

In the present paper, an analytical solution for the equation of energy 
for a compressible flow is given, independently of thc equation of motion, 
where a parabolic profile is assumed for the axial velocity. The final objec- 
tive is to obtain information concerning the temperature distribution in the 

1 Paper dedicated to Professor Joseph Kestin. 
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fluid flowing in the capillary and to establish that the current premise of an 
isothermal flow in solving the equation of motion is generally consistent, 
except in the case of a critical, i.e., a very compressible, fluid. In the net 
thermal effect, two opposite contributions must be distinguished: the 
cooling part, due to expansion of a compressible fluid, and the heating 
part, due to viscous dissipation. An approximate solution for the cooling 
part in an ideal gas is given by Prud'homme et al. [2], For an incom- 
pressible fluid, where only the heating part occurs, Brinkman [3] and 
Siegel et al. [4] calculated the thermal effect in the case of the boundary 
condition of a uniform wall heat flux. Brinkman also considered the case 
where the capillary-wall temperature is homogeneous. The latter boundary 
condition is also imposed on the present calculation for a compressible 
flow and was also used by van den Berg [-5 ] in a numerical computation 
of the net temperature distribution. 

In Section 2, the solutions of the equation of motion for a com- 
pressible laminar flow in a capillary are summarized, as far as they are rele- 
vant for solving the equation of energy. The equation of motion is solved 
in Ref. 1 by means of a perturbation method in successive orders in two 
parameters, of which the main one is a measure for the effect of the com- 
pressibility of the fluid. Van den Berg et al. [-6 ] showed that, conditionally, 
this effect becomes substantial and has then to be accounted for, mainly by 
means of an additional factor in the classic Poiseuille formula for an 
incompressible fluid. This compression factor equals the ratio of a mean 
density in the capillary and the density at its entrance. The solution of the 
equation of energy, which is presented in Section 3 for the complete equa- 
tion as well as for an approximated form, is split up into an asymptotic 
part and a part which decays exponentially with the axial coordinate. 
Furthermore, an entry length for the temperature is defined referring to the 
approach of the asymptotic value of the temperature. Finally, in Section 4 
the formalism for the calculation of the thermal effect and of the corre- 
sponding entry length is applied to a flow of ethylene. This calculation 
shows that, in the vicinity of the gas-liquid critical point, the flow is far 
from isothermal due to the occurrence of substantial cooling. 

The results of the present paper together with those given in Ref. 1 
formed the base for the development of a reliable working equation for the 
capillary-flow viscometer. Consequently, a thorough comparison became 
possible between the results obtained with capillary viscometers and 
those obtained with other types of viscometers which are also suitable 
for absolute measurements, in particular with respect to the density 
dependence of the viscosity of various fluids. Among those other 
viscometers, the most important are the different versions of the oscillating 
disk/cup viscometer developed by Professor Kestin E7-9]. Another field 
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where the solution for the problem of compressible capillary flow can be 
applied is in the interpretation of experimental data in supercritical fluid 
chromatography and in other experiments with near-critical solvents [10]. 

2. HYDRODYNAMIC EQUATIONS AND CONDITIONS 

A compressible capillary flow, generated by a force due to a static 
pressure p in the fluid, has been examined for a system without heat 
production by external sources. Therefore, the evolution of the density p, 
of the velocity if, and of the internal energy 0 per unit mass in this system 
is described by the three hydrodynamical conservation equations. 

Equation of continuity, 

Dp = __p(~. ~) (1) 
Dz 

Equation of motion, 

D~ _ ~  P (2) p ~ =  �9 

Equation of energy, 

DO 
p = - ( V .  c]+/~: (Vg)) (3) 

Dz 

where z is the time and D/Dz is an abbreviation for ~/?~z + tT-V; ~ is the 
pressure tensor and ~ is the heat-flow vector. 

The solutions Of these equations derived in this paper are restricted by 
the following assumptions: The fluid is Newtonian, which means that the 
pressure tensor can be written as 

P = p ] -  2r/~-- ~c(V. zT) I (4) 

where r/is the coefficient of shear viscosity of the fluid and ~ the coefficient 

of bulk or dilatation viscosity, T the unit tensor, and ~ the rate of shear 
tensor defined by 

�89 - i (5) 

The radius R of the capillary is small compared to its length L (R/L is of 
the order l0 3). The flow is stationary, laminar, and strictly axial; the 
Reynolds number Re (=2Rp(t/~, with ~ the mean flow velocity) is less than 
about 2000. The pressure p is a function of z only (justified in Ref. 1 up to 
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second order in R/L). There is axial symmetry, no Knudsen flow, and no 
slip flow at the wall. There is no gravity effect and an influx correction can 
be neglected. The heat flux is linear with respect to the temperature 
gradient (law of Fourier ~ = - 2  VT, where 2 is the coefficient of thermal 
conductivity) and the wall is at a homogeneous temperature To. The 
thermal conductivity and both viscosities of the fluid are constant in the 
pressure range throughout the capillary. 

Along with the equation of state, 

p = p(p, T) (6) 

and the boundary and initial conditions, Eqs. (1)-(5) give a complete 
determination of the distributions of pressure, density, temperature T, and 
velocity components in the flowing fluid. Substitution of Eq. (4) for the 
pressure tensor P in the energy equation, Eq. (3), leads to four terms on the 
r.h.s, of that equation, which represent the increase in the internal energy 
of the system per unit time and unit volume due to, successively, the 
thermal conduction, the compression, and the dissipations related to the 
shear and bulk viscosity. 

For the compressibl e flow through a straight circular capillary, the 
various equations are expressed in cylindrical coordinates (r, 0, z). Under 
the simplifying boundary conditions, the continuity equation, Eq. (1), then 
reduces to 

3(pu;.) =-0 (7) & 

and the equation of motion, Eq. (2), for the axial velocity component to 

~Uz dp 1 3 [  ~u~' (4 ~)32Uz 
pu~ ~oz = ---+'TrYr~r-er)  5 + ~z 2 (8) 

In order to write the energy equation in terms of the temperature T, the 
internal energy is expressed in the enthalpy /-) according to 0 = / t - p / p .  
Use of the continuity equation, Eq. (1), leads, then, to 

DI21 Dp - V  q+(2t/~+Tc(~ ~)/):Vff (9) 
l O  �9 " 

Dr Dr 

and, with the first law of thermodynamics, to 

- - jj +,7 \ Jr/ 

(10) 
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Cp is the specific heat per unit mass at constant pressure and e is the 
thermal expansion coefficient, 

l 
~= - - (11) 

p \c? TJ,, 

Since p =  p(z), the density p of the fluid is also only a function of z, 
under the preconception that radial density gradients due to temperature 
differences in the flow can be discarded. Integration of the continuity 
equation, Eq. (7), implies 

uz(x, z)= wE, x,(1 (12) 
p(z) 

where x is the reduced radial coordinate, x = r/R, and E(x) is the velocity- 
profile function; the quantity W, which is independent of both z and x, is 
related to the mass-flow rate I according to 

.R = xE(x) dx (13) I=1 2~rdrp(z) u~(r,z) 2gR2W( 1 
JO a0 

Equation (12) for u=(x, z) is inserted into Eq. (8), and a further simplifica- 
tion of this equation is carried out by integration over the length of the 
capillary, whereby the axial coordinate z crosses the interval [0, L], the 
pressure p(z) decreases from Pb = p(0) to P~x = p(L), and the density p(z) 
f r o m  Pb = p ( 0 )  t o  rOex = p(L). The final result is then 

C1E2(x) - C 3 E ( x  ) = 1 + C2~E(x) (t4a) 

with the normalization and boundary conditions 

( %  E(O)= 1, E(1):=O, and ~xx ~-=o 

where 

= 0  (14b) 

3 is the operator 
C 

x 
(15) 

and C~, C2, and C3 are dimensionless constants, given by 

Cz = W 2 Y L 1 and 
~, C2=qWR2 X, C3=r/ + W X (16) 
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The constants X, Y, and Z are defined by 

I'Pb fPb ( ~ 2 d P )  (17) ~zz X-= p d p = ( p ( p ) ) A p ,  Y = l n  p--kb, and Z =  pd 
.pex P ex Pex 

where Ap (=Pb--Pex) is the pressure difference over the capillary and 
( p ( p ) )  a density calculated as the average of p(p) over the pressure inter- 
val [P~x, Phi- The physical meaning of the key parameter C1 was clarified 
in Ref. 1 by showing that C1 can be written approximately as the product 
of some dimensionless quantities, originating from the dimensions of the 
capillary and properties of the fluid and the flow, namely, 

1 R 
c ,  ~ 4 7  Re . , ~  ~p (18) 

where xT is the isothermal compressibility of the fluid. 
The perturbation solution of Eqs. (14), in successive orders in 

parameter C1, gives, in zero order for the velocity profile [1], 

E(x)  = E(~ = 1 - x 2 (19) 

and for the viscosity, 

q =/1 (o) = 7zR4 
8IL Pb Ap F~ (20) 

with 

( P ( P ) )  Fc = (21) 
Pb 

which is known as the Compression factor. 
For this zero-order parabolic velocity profile (19), Eq. (12) can be 

written as 

uz(x, z) = u~~ z )  = 2 a ( z ) ( 1  - x 2) 

By the use of Eq. (20), the mean flow velocity ~(z) can be expressed as 

(22) 

with 

I Pb 
(t(z) = nR2p(z ) -- Ub p(z) (23a) 

R 2 Ap 
uinc - St/(0) L /gb ~--- tlincFc and (23b) 
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where /~b is the mean flow velocity at the beginning of the capillary for a 
compressible fluid and ~ino that for an incompressible fluid in the same 
circumstances. 

3. T H E  T E M P E R A T U R E  D I S T R I B U T I O N  

3.1. Introduction 

The temperature distribution T(r, z) in a compressible viscous flow in 
a capillary is computed in zero order from the energy equation, Eq. (10). 
For this purpose, two additional assumptions are made. First, the axial 
velocity uz(r, z) is approximated by the zero-order solution of the equation 
of motion, Eq. (8). This solution, expressed by Eq. (22), includes the 
parabolic (Poiseuille) profile given by Eq. (19) and the mean velocity fi(z) 
in Eqs. (23). It should be recalled here that higher-order contributions, due 
to the compressibility of the fluid, do not significantly affect the velocity 
profile [ 1 ]. Moreover, the impact of the velocity profile on the temperature 
distribution is only moderate, as shown in Section 3.4. Second, the pressure 
gradient dp/dz along the capillary is assumed to be constant: 

dp Ap (24) 
dz L 

Furthermore, both the position coordinates r and z and the temperature 
T(r, z) are reduced into dimensionless quantities, x, ~, and O(x, ~), respec- 
tively, by 

r z T(r, z ) -  ~o 
x =-- O(x, ~ ) -  (25) 

R'  ff = R Pe'  16 Br T o 

where 

Pe is the P6clet number = RePr 

Re is the Reynolds number = 2Rpb (t_b 

Pr is the Prandtl number = ttCv = v 
2 Da- 

Br is the Brinkman number = t/ff~nc 
)oTo 

(26) 
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Here v=Up, the kinematic viscosity, and DT=2/pC'p, the thermal 
diffusivity. By the use of Eqs. (20)-(25), Eq. (10) transforms into the 
nondimensional form 

(/)0 ) p -2/)20 x 2 ~-(+C ( 1 - x 2 ) = 3 0 +  e ~ 7 +  + D ( l - x 2 )  2 (27) 

with the boundary conditions 

/)0 
a t x = 0 ,  - - - - 0  

/)x 

a t x =  1, 0(1, ~ ) - 0  

at ~ = 0, O(x, O) - 0 

and with the constants 

(28) 

C = Tox (29) 

D = ~  5 + ~  T Y (30) 

The first boundary condition expresses the axial symmetry of the problem, 
the second implies that no accommodation effects are considered, so that 
the temperature of the fluid at the wall is equal to the homogeneous wall 
temperature To, and the third condition establishes that the fluid at the 
entrance of the capillary is also at equilibrium temperature over the whole 
cross-section. Actually, the quantities C and D vary slowly with the axial 
coordinate. Instead of these varying quantities, we have substituted in 
Eq. (27) their mean values over the length of the capillary. Therefore, in D 
the original factor Ldlnp(z)/dz is replaced by Y and, furthermore, in 
various terms the density p(z) by the mean density (p(z)), which equals 
the mean density (p(p)), defined in Eq. (17), because of the constant 
pressure gradient (24). 

The quantity C, originating from the compression term - p ( V .  if) in 
the energy equation, Eq. (3), and, therefore, a measure for the effect of the 
compressibility of the fluid, is considered as the key parameter in the 
reduced energy equation, Eq. (27). For an ideal gas C =  1, for a real gas in 
the critical region C is much larger than unity, for a dense gas C < 1, and 
for liquids C ~ 1. The term Pe 2 820/g~2 represents the energy rate per unit 
volume due to the heat conduction in the axial direction. The quantity Pe 2 
is also treated as a parameter, although it is much less decisive. In many 
cases Pe 2 > 1. 
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The solution O(x, ~) of Eq. (27) is split into 

O(x, ~)= C01(x , ~)-~ 02(x , ~) (31) 

where 01(x, ~) and 02(x, ~) satisfy the equations 

-2 ~201 6 0 ~ ( l _ x  2) -301+ + x  2 - 1  (32) ar = Pe 

(P' 202 x2Jr-D(1-x2)  2 (33) G02~ (l --xa)=`302q-Pe : (?~2-+ 

and the boundary conditions given by Eq. (28). The function O~(x, ~) 
represents the reduced temperature in the case of cooling of the flowing 
fluid with C =  1, due to the expansion without viscous heat production, 
while O2(x, ~) describes the effect of viscous heating only. Consequently, the 
general solution O(x, ~) of Eq. (27) is composed of the two particular 
solutions On(x, ~). Actually, without the axial conduction term, Eq. (33) 
is the energy equation for an incompressible fluid (D = 0), with an axial 
coordinate ~Cp/Cv, as applied by Brinkman [3] for the calculation of the 
thermal effect due to viscous dissipation only. 

3.2. The Asymptotic Solution 

The asymptotic solutions for ( ~  ~ of Eqs. (32) and (33), 0 ..... (x) = 
O,(x, ~ ) ,  are determined by imposing the condition that the axial 
derivatives of On(x, ~) are identical to zero. For that case these equations 
reduce to 

0 = `30~, ~(x) + x 2 -- 1 (34) 

0 = `302, ,~(x) + x 2 + D(1 - x2) 2 (35) 

with the boundary conditions 

at x = 0, aOn.~(x) = 0 
Ox 

at x = 1, O,,oo(x) = 0 

The solutions are easily found by repeated integration as 

01,~o(x) = - 16 (3 -- 4x 2 + x 4) 

02,~(x)= ( 1 - x 4 ) + ~ ( 1 - - x 2 ) ( l l  - 7 x Z + 2 x  4) 

(36) 

(37) 

(38) 
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The second term in this expression for the viscous-heating contribution 
02,,~(x) contains in the constant D the ratio ~c/t/ of the bulk and shear 
viscosity. In experiments, Madigosky [ 11] found values up to 0.7 in dense 
gaseous argon for this ratio. From experimental data on water and a num- 
ber of organic liquids, Karim and Rosenhead [12] deduced that the value 
of this viscosity ratio ranges from about 1 to 120. On the basis of these 
conclusions, wc estimate that the second term in 02,~(x) is smaller than 
0.01% of the first term, on the condition that R/L<~IO 3 and Y~<I. 
Henceforth, we omit this term, which implies that the impact of the bulk 
viscosity on the thermal effect is neglected. The total asymptotic solution 
Ooo(x) is then 

O~(x) = - 1~ [C(3 - 4x 2 + x 4) - (1 - x 4 ) 3  (39) 

so that the temperature change on the axis is given by 

T(0, ~ ) -  To = - B r  To(3C-- 1)= - - -  ~no (3To~-  1) (40) 

3.3. T h e  So lu t ion  for  F i n i t e  

In order to solve Eqs. (32) and (33) for finite ~, each of the functions 
On(x, r) is written as the sum of the corresponding asymptotic solution 
given in the preceding section and a function O~,d(x, ~), which will be 
damped out exponentially with ~ and which must be determined: 

On(x, ~) = 0 ....  (x) + On, a(x, ~) for n = 1, 2 (41) 

In both cases substitution leads to the equation 

80n'a 1 ~20"'a 
( - x 2 ) = ~ 0 n ,  d + P e - 2  e~2 (42) 

with the four boundary conditions 

at x = O, 

a t x = l ,  

a t~  =0 ,  

OOn,,t( X, ~ ) -- 0 
Ox 

O.,, t(1,  ~) --  0 

On,~(X, O) -- - -O. ,~(X) 
(43) 

at ~ = 0% On,a(x, oo) =- 0 
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The fourth condition ascertains that the damping term vanishes in the 
asymptotic limit. 

If the functions O,,d(x, ~) are assumed to be of the form 

o~ ~)= ~U(x) ~ ( ~ )  (44) 

then Eq. (42) leads for qs(~) to an exPonential dependence on the axial 
coordinate, 

~b.(~) = e e2r (45) 

which satisfies the fourth boundary condition in Eq. (43), and for gt.(x) to 
an ordinary differential equation: 

~Pn+fl2(1 + P e  2 f 1 2 - x 2 )  ~/n----O (46) 

In combination with the first and second boundary condition, this equation 
for the radial dependence of the temperature distribution has an infinite 
number of eigenvalues f12=/?,2.(pe2) and corresponding eigenfunctions 
Oi(x) (i= 1, 2,...), independent of n, which produce the general solution 

gtn(x ) = ~ bn, iOi(x) (47) 
i=1 

The eigenfunctions can be developed in the power series 

0i(x)= ~ c~,ix 2~ 
k=O 

(48) 

of which the permanent convergence is ensured by the recursion formulas 
for the coefficients: 

2 B 
Cl,i.  --~ - -  r--L (1 ~- Pe 2fl2) CO, i 

4 

G,i- 4k2[(l+Pe-2fl2)G l,i-c~-2,i] for k~>2 

(49) 

We make (arbitrarily) ~,i(0)= 1 by choosing Co, i= 1. Each of the eigen- 
functions ~9 i satisfies the first boundary condition in Eq. (43), because these 
solutions are even functions. The second condition requires that 

S ~ , ( 1 ) =  ~ % , = 0  (50) 
k=O 
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Since ck,~= ck,~(fl~), the eigenvalues f12 are the zeros of the sum S of the 
coefficients c~,~. These zeros, and simultaneously the coefficients ck,~, can be 
readily computed by brute force: let f12 run through the integers 1, 2, 3,..., 
and determine whenever S has changed sign. In this way one obtains the 
zeros/32 in the order of increasing value for i = 1, 2 ..... We have carried out 
this calculation for Pc2= ~ ,  1000, 100, 10, and 1. It turns out that in each 
of these five cases the coefficients Qi ,  calculated with the formula's of 
Eq. (49) for each fixed eigenvalue /3~ and for running k, are positive for 
even k and negative for odd k and, furthermore, that Ick,~l goes through a 
maximum and then falls monotonously. Since the maxklck, il with 
increasing f12 increases very strongly (in the case Pe 2= ~ from 1.8 at i =  1 
for k = 1 to 3.1 • 1012 at i = 8 for k = 20, and in the case Pe 2 = 1 from 1.6 
at i =  1 for k =  1 to 6.6 • 108 at i = 8  for k =  12), the computation of the 
eigenvalues cannot be extended indefinitely; with 18-digit accuracy we 
succeeded in computing the first eight zeros, which are given in Tables I A-E 
together with the number of coefficients ck,~ involved. This number is deter- 
mined by the limiting condition applied, viz., the computation is truncated 
every time for that value of k for which [ck.~[ <maxk [ck.~] • 10 12. Due to 
the accuracy of the computation, the values of the sum S, calculated with 
Eq. (50) for each of the zeros /32, are not exactly zero, as they should be. 
The deviations are smaller than 10 lo in nearly all cases. 

With the polynomials, Eq. (48), calculated for the eigenfunctions ~,., 
the coefficients bn, g in expansion, Eq. (47), for the general solutions ~u can 
be determined from the third boundary condition: 

• b,,,i4,~(x) = - 0 . . ~ ( x )  for n = 1, 2, and m = 8 (51) 
i~-1 

where the asymptotic solutions 01,~(x) and 02,~,~(X ) a r e  given by Eqs. (37) 
and (38) without the second viscous dissipation term (D = 0). 

For  the actual calculation of the coefficients bn, i, a practical method 
has been applied, which satisfied the condition given by Eq.(51) 
approximately, i.e., precisely in m points. For  this purpose m values of x 
are substituted in both sides of this equation, arbitrarily chosen in the 
interval [0, 1 ]. We choose m equidistant values of x from 0 to ( m -  1)/m. 
The coefficients bn, i must then be solved from a set of m linear equations 
for each of the five values of Pc 2. The resulting values of bn, i, for n = 1, 2 
and i = 1 ..... m, are also given in Tables IA-E.  We note that the functions 
~n(x)+On.~(X) for n =  1, 2, which should be identical to zero, oscillate 
around this value due to the use of a finite number of eigenfunctions. The 
method presented yields the maximum absolute deviation for Pe 2 = ~ ,  viz., 
0.0001 for n = 1 and 0.0011 for n = 2. 
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Table I. Eigenvalues, Mean Values of Eigenfunctions, and Coefficicnts for the 
Solution of the Energy Equation in Terms of the Temperature 

877 

i fl~ Na bl,i b2,i ~i 

(A) Pe2=cc 

1 7.31359 17 0.201876 -0.084593 0.393597 
2 44.60946 26 -0.018081 0.031577 -0.165943 
3 113.92103 32 0.005170 --0.014529 0.105110 
4 215.24054 38 -0.002260 0.008642 --0.076931 
5 348.56432 44 0.001183 -0.005483 0.060675 
6 513.92624 49 -0.000599 0.003024 --0.050079 
7 717.27568 54 0 .000874 0.005988 0.040546 
8 869.09814 58 --0.000665 0.004850 -0.037520 

(B) Pe 2= 1000 

1 7.24785 17 0.201977 -0.084996 0.393911 
2 42.03430 25 -0.018228 0.032456 -0.164861 
3 98.87895 31 0.005220 0.015503 0.101023 
4 169.66928 36 --0.002165 0.009061 --0.069431 
5 248.87920 41 0 .001040 -0.005673 0.050215 
6 333.33022 45 -0.000543 0.003769 -0.037499 
7 421.29458 48 0.000341 -0.002985 0.028746 
8 516.11709 51 -0.000142 0.001371 -0.022171 

(C) Pe 2 = 100 

1 6.74405 17 0.201959 --0.086225 0.396330 
2 30.76792 24 --0.017757 0.033991 --0.158369 
3 59.50346 28 0.004313 --0.015383 0.087138 
4 89.47668 32 --0.001380 0.007891 -0.054177 
5 119.97261 35 0.000511 --0.004352 0.036760 
6 150.75031 38 --0.000213 0.002535 --0.026670 
7 182,69735 41 0.000093 -0.001425 0.020355 
8 212.73725 44 -0.000027 0.000468 -0.016140 

(D) Pe 2= 10 

1 4.62589 16 0.199457 0.087017 0.406831 
2 14.36583 21 -0.013858 0.033607 --0.143040 
3 24.21902 25 0.002351 -0.013142 0.072495 
4 34.10340 28 -0.000591 0.006137 --0.044452 
5 44.00496 31 0 .000195 -0.003244 0.030557 
6 53.91644 33 -0.000077 0.001817 -0.022597 
7 63.83411 36 0.000031 0.000931 0_017564 
8 73.75650 39 -0.000008 0 .000274 -0.014152 

(E) Pe2= 1 

1 2.04437 14 0.195275 --0.086344 0.420388 
2 5.18734 18 -0.008751 0.031901 -0.131103 
3 8.32345 22 0.001194 -0.011589 0.065986 
4 11.46137 25 -0.000286 0.005358 -0.041023 
5 14.60050 28 0.000095 -0.002846 0.028572 
6 17.74037 31 -0.000038 0.001588 -0.021344 
7 20.88069 34 0.000015 -0.(~0793 0.016719 
8 24.02099 36 -0.000004 0.000225 -0.013551 

a N is the number of coefficients %i- 
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Where Pe 2= 0% the differential equation, Eq. (46), is of the Sturm- 
Liouville type. This allows us to apply a mathematically more sophisticated 
method to compute bn, i, where use is made of the fact that the eigen- 
functions {r form an orthogonal system on the interval [0, 1] 
with the weight function x (1 -x2 ) .  This leads to 

b,,i-= - ~ O=,o~(x) O i(x) x(1 - x  2) dx 
~o ~ 0~(x) x(1 - x  2) dx (52) 

Due to lack of computational accuracy, however, this method broke down 
for the coefficients bn, g with i > 4, even when extended reals were used; the 
polynomials ~bi consist of a large number (17 for ~b 1 up to 58 for ~bs) of 
alternating terms with large coefficients cg,~, which, furthermore, occur 
squared in the denominator of Eq. (52). It turns out that the coefficients 
b,,l ..... bn,4 calculated with Eq. (52) agree reasonably well with those 
obtained according to the above-mentioned practical method, which are 
given in Table I A. 

According to Eqs. (31) and (41), the total solution of Eq. (27) for the 
temperature distribution O(x, ~) can now be written as 

1 
O(x, ( ) =  -~-~ [ C ( 3 - 4 x  2 

8 

-x4)] + Z (Cb,,i+b2,,) 
i = l  

(53) 

In Fig. 1 the temperature distribution in a capillary across the radial 
direction, where Pe 2 = o% is presented for four different values of the axial 
coordinate ~, including the asymptotic limit. The two separate contribu- 
tions, viz., the cooling part 01(x, ~) and the viscous heating part 02(x, ~), 
are shown in Fig. la, and the net effect O(x, ~) for C = 1 is shown in Fig. lb. 
The curves for 02(x, ~) agree with those given by Brinkman [-3] as the 
result of his treatment of the heat effects in an incompressible capillary flow 
under the same conditions as applied in the present calculation. Making 
this comparison, one should take into account that the Brinkman results 
are expressed in a different reduced temperature which equals 40. He 
calculated the eigenvalues/~ to/32 in four digits. These values are equal to 
those given in Table IA, except for that of/~4 z, which shows a difference 
of 0.6 %. 

Figures 2a and b contain the calculated temperature distributions 
versus the axial coordinate ~ for Pe 2= oo along five different lines of 
constant x. 

From Figs. 1 and 2, where Pe 2= 0% it can be seen clearly that, close 
to the wall of the capillary where the velocity gradient c~u=/Ox reaches its 
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maximum value, a positive net temperature effect even arises due to the 
strong viscous dissipation. Similar figures can be obtained for smaller 
values of Pc 2. Figure 3 shows the temperature  distribution versus the axial 
coordinate  ~ along the center line x - = 0  for p e 2 = o %  10, and 1. The 
composing parts 0~(0, ~) and 02(0, ~) are given in Fig. 3a, and the net 
effect 0(0, ~) for C =  1 in Fig. 3b. The curves for p c 2 =  1000 and 100 nearly 
coincide with the limiting curve for P e 2 =  oc and are therefore omitted. In 
these figures the ~ axis is extended to t.5 because of the slower course of 
0(0, [)  for smaller values of  Pc 2. 
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Fig. l. The reduced temperature for compressible 
viscous flow in a capillary versus the reduced radial 
coordinate, along four lines of constant reduced axial 
coordinate ~" for Pe2= re. (a) The cooling contribution 
01(x, r)i due to expansion, and the heating contribution 
02(x, ~), due to viscous dissipation. (b)The net tem- 
perature effect O(x, r), calculated for compressibility 
parameter C = 1. 
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Fig. 2. The reduced temperature for compressible 
viscous flow in a capillary versus the reduced axial 
coordinate, along five lines of constant reduced radial 
coordinate x for Pe z = oe. (a) The cooling contribution 
01(x, ~), due to expansion, and the heating contribution 
02(x, ~), due to viscous dissipation. (b )The  net tem- 
perature effect O(x, ~), calculated for compressibility 
parameter C =  1. 

3.4. A p p r o x i m a t e  So lu t ion  for  F i n i t e  

In order to examine the influence of the velocity profile on the tem- 
perature damping term O~,a(x, ~), Eq. (42) is solved for the case Pc2= oe 
with an uniform velocity profile that is obtained by replacement of the 

_ i With unchanged parabolic velocity profile (1 x 2) by its mean value ~. 
boundary conditions given by Eq. (43) and separating, as in Eq. (44), the 
x and ~ dependence of the approximate damping O,,,a, Eqs. (45) and (46) 
now become 

q~,(~) = e -  2~2r (54) 
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Fig. 3. The reduced temperature for compressible viscous 
flow in a capillary versus the reduced axial coordinate, along 
the axis (x=0) for pe2=oc, 10, and 1. (a) The cooling 
contribution 0~(0,~), due to expansion, and the heating 
contribution 02(0,(), due to viscous dissipation. (b)The 
net temperature effect 0(0, (~), calculated for compressibility 
parameter C= 1. 

and 

~ u n  + ~2g'n = 0 (55) 

The lat ter  is the zero-order  Bessel differential equation.  In combina t ion  
with the first two bounda ry  condit ions given by Eq. (43), this equat ion has 
an infinite n u m b e r  of  eigenvalues ~2 and corresponding eigenfunctions 
@i(~tix) ( i =  1, 2,...), independent  of n. Each of these functions is a linear 
combina t ion  of the zero-order  Bessel function Jo(~ix) and the zero-order  
N e u m a n n  function No(o~ix). However ,  since ~ ( 0 )  must  be finite and 

840/14/4-18 
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No(~ix) tends to minus infinity for x approaching zero, the coefficient of 
the function No(aix)must  be zero. The general solution is therefore 

~ , ( x ) =  ~ a,,iJo(~ix) (56) 
i~l  

Each of the functions Jo(~x) is even and thus satisfies the first boundary 
condition in Eq. (43). The fulfillment of the second boundary condition at 
x = 1 requires 

J0(~) = 0 for i =  1, 2,... (57) 

which means that the eigenvalues ~i are the known positive zeros of the 
zero-order Bcssel function. In analogy with the coefficients bn,~ in Eq. (47), 
the coefficients a~,, in Eq. (56) can be found from the third boundary 
condition at ~ = 0: 

~a,, , iJo(aix ) = -On.~(x ) for n = 1, 2 (58) 
i=1 

Because of the orthogonality of the functions {J0(aix)}~21 on the interval 
[0, 1 ] with the weight function x, we can write 

0.. Jo( ,x) x dx 
(59) 

Substitution of the asymptotic solutions 01,.~(x) and 02,~(x), as given by 
Eqs. (37) and (38), and use of some properties of the Bessel functions of 
zero and first order (see Appendix), leads straightforwardly to 

8 
a l ,  ` - -  0~j l (~ / )  

2 
a 2 ,  i - -  ~ j l ( ~ i )  ( a ~ - 4 )  

(60) 

The total approximate solution Oa(x, ~) is then 

Oa(X, ~) = -- 1 EC(3 -- 4x 2 + x 4) -- (1 -- x4)] 

i - ,  ~ j , ( ~ , )  c -  ~ ( ~  - 4) (61) 
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It turns out that the resulting curves for O,(x, ~) versus x for constant r and 
versus ~, for constant x are globally the same as those for O(x, r) in Figs. 1 
and 2. For the approximate solution, the dependence on x and ~ is only 
somewhat stronger. Therefore, it can be statcd that the influence of the 
velocity profile on O,,d(x, ~) is limited. 

3,5. Mean Temperature 0(~) 

For practical applications, it can be convenient to use the mean 
temperature .0(~), which is calculated from O(x, ~) by averaging over the 
cross section of the capillary according to 

0(~)=2 I xO(x, ~)dx (62) 
~0 

From Eq. (53) it then follows that 

8 

0(~)= - ( 2 C - 1 ) +  ~ (Cb~,e+b2,3~ie l~r (63) 
i = l  

The mean ~ values are calculated from the polynomial expansion, 
Eq.(48), as 

4;; -k=o ek,,(L) (64) 

These values are also inserted in Tables lA-E  and we can see that, 
appropriately, bl,i~,- > 0 and b2,i~i < 0 for all values of i. 

From Eq. (61), the approximate mean temperature 0,(~), with the 
same asymptotical limit as 0(~), is found to be 

0a(~):--- ( 2 C - 1 ) + 1 6  -~ C-- ( ~ - 4 )  e 2~ (65) 
i 1 

In Fig. 4 the mean reduced temperature versus the axial coordinate 
is presented by solid lines and the approximate mean reduced temperature 
by dashed lines, where pc2= ,~, 10, and 1. The composing parts 01(~ ) and 
01,(~), for the cooling of the fluid due to expansion, and 02(~) and 02,(~), 
for the heating due to viscous dissipation, are shown in Fig. 4a, and the net 
effect 0(~) and 0a(~ ) for C = 0, 0.42, 0.50, and 1 in Fig. 4b. For C = 0.42 and 
0.50, only the curves corresponding to Pe 2= oo are shown. For these C 
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Fig. 4. The mean reduced temperature for com- 
pressible viscous flow in a capillary versus the reduced 
axial coordinate. ( - - )  Solution for parabolic flow 
velocity profile for pc2= .0% 10, and 1. ( - - - )  Solution 
for uniform flow velocity profile for pc2= m. (a )The  
cooling contribution 01((), due to expansion, and the 
heating contribution 02(~), due to viscous dissipation. 
(b) The net temperature effect 0(~), calculated for 
compressibility parameter C=0 ,  0.42, 0.5, and 1. 
(c) Enlargement of b for C=0.42 and 0.5. 
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values the contribution of the cooling nearly counterbalances that of the 
heating. More details of the axial dependence of the temperature in these 
cases for all three values of Pe 2 can be read from Fig. 4c, in which the 
vertical scale is 18.75 times larger than in Figs. 4a and b. For Pc2= oo the 
function 0(() increases monotonously for 0~< C<0.42, goes through a 
maximum for 0.42 < C<0.91, and decreases monotonously for C>~0.91 
because of the preponderance of the expansion term. For the smaller values 
of Pe 2 the picture is nearly the same, with only a small shift in the bounds 
for C. Furthermore, it is clear that, in spite of the magnitude of the change 
in the velocity profile, from parabolic to uniform, its effect on the axial 
dependence of the mean temperature is not really spectacular. Since it is 
shown in Ref. 1 that, depending on the parameter C1 in Eq. (14a), the 
higher-order velocity profile deviates only slightly from the parabolic 
profile, we may conclude that the real course of the mean temperature will 
not differ substantially from that given by Eq. (63) for 0((). We can con- 
clude also that the solutions 0(() for Pe 2= 10 and 1 deviate significantly 
from those for Pc2= oo. The latter represent the solutions of Eq. (27) 
neglecting the axial conduction term, as was usually done in the past. 

Prud'homme et al. [2] analyzed the process of cooling in the flow of 
an ideal gas (C = 1) without viscous heating and without axial conduction, 
starting from Eq. (32) for 01(x, ~). These authors simplify this equation by 
the immediate elimination of the radial dependence of the temperature, 
which is achieved by averaging of the equation over the cross section of the 
capillary. Furthermore, they introduce an unspecified heat-transfer coef- 
ficient h in the radial heat conduction at the wall of the capillary. The con- 
dition that their solution has the same asymptotic limit - ~  as that given 
by our Eq. (63) leads to h = 32/R, corresponding with a Nusselt number of 
6. The result for the mean temperature 0p(~) is then 0p(~)=-(1 /12)  
[ 1 - e x p ( - 1 2 ( ) ] .  It turns out that the curve for 0p(~) nearly coincides with 
that for 01a(~) in Fig. 4a. This is understandable since the coefficient 2c~ in 
the exponent of Eq. (65) equals about 11.6, while the next term with 
2e 2 ~ 60.9 is almost negligible. 

3.6. Entry Length 

In analogy with the entry length for the velocity, a transition length 
~99 for the mean temperature 0([) is introduced. In order to be independent 
of the parameter C, ff99 is defined as that value of ~ for which 01((') reaches 
99% of its asymptotic value 01(oo)=-1/12.  It then turns out that 
02(~99) = (0.99+5)02(oe), in which the value of e varies from 0.0012 to 
0.0017, depending on the value of Pe. The value of ff99 is found to be nearly 
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constant for P c > 5 0  and to increase with decreasing values of Pe for 
Pe < 50, especially for Pe < 10. This behavior is expressed by 

f 0.625 for P c >  50 

ff99 = ~0.625 + 0.138 e -~ r'e + 3.329 e o.8 Po 

I, to within 0.1% for 1 ~< Pe ~< 50 

For  0(~99 ) the relation 

0(~99) = 0.99 O( oc ) + eO 2( oe ) 

(66) 

(67) 

then holds, i.e., 0(~9~) equals 99% of 0(oe) plus a bias which is, at most, 
0.17% of 02(oc), which is about 7x  10 -5. Consequently, for almost all 
values of C the reduced temperature 0(~99 ) equals practically 99% of the 
asymptotic value 0(oe ). This percentage can be substantially different, only 
for C values around 0.5, where 0(oe)~0.  However, in that small range of 
C values, the net thermal effect is very small (see Figs. 4b and c), so 
that for these circumstances the practical meaning of the entry length is 
restricted anyhow. If ALT is the real distance in the capillary corresponding 
to the entry length ff99, according to Eq. (25) we can write 

AL.r = ~99 R Pe (68) 

The increase in AL-r with the P~clet number can be understood in view of 
the fact that it is possible to interpret Pe as the ratio of the axial heat trans- 
port by convection and by conduction. If the entry length is referred to the 
temperature on the axis 0(0, ~), then ~99 must be determined from 02(0, ~) 
and is also found to be constant for Pe > 50 with the value 0.672. 

The entry length ALu for the center-line velocity is ALu = 0.11 R Re as 
calculated by Langhaar [13], Hornbeck [14], and many others. The ratio 
of the entry lengths for temperature and velocity, ALx/ALu,~ 6 Pr, there- 
fore, depends only on thermophysical properties of the fluid and not on the 
flow itself. 

In Fig. 5, the net mean reduced temperature is plotted versus the 
logarithm of the ratio of the real axial coordinate z and the length of the 
capillary L for R/L =0.001, and for eight values of Pe 2, viz., pc2= 107, 
106,..., 10 ~ By plotting 0 as a function of log(z/L) instead of as a function 
of the reduced coordinate ~ (as in Fig. 4), the curves, which nearly coin- 
cided for Pe > 10, transform now into parallel and equidistant but no 
longer coincident curves, due to the occurrence of the factor Pe in the 
transformation of ~ into z. Figure 5a refers to values for the parameter C 
of 0.42 and 0.50, and Fig. 5b, where the vertical scale is 6.25 times smaller, 
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Fig. 5. The net mean reduced temperature and the 
entry length z99 for compressible viscous flow in a 
capillary (R/L=O.O01) versus the axial coordinate 
on a logarithmic scale, for eight values of the P6clet 
number at three values of the compressibility 
parameter C. (a)C=0.42 and C=0.50. (b)C=I;  
(---) solution with neglect of axial conduction. 

to C =  1. With a different value for R/L, all the curves in Fig. 5 are 
paralMly shifted over the same distance. 

In the two figures, Figs. 5a and b, the entry lengths z99/L , which are 
independent of C, are also indicated. It is obvious that for the smaller 
values of Pe ( P c <  10), where the influence of axial heat conduction 
dominates over. that of convection, the entry length is less than 1% of the 
length of the capillary, which means that the asymptotic temperature is 
reached almost instantly. 

If 0(~) is calculated for Pc2=  co, i.e., neglecting the axial conduction 
term in Eq. (42), and subsequently different values of Pe (Pe2= 1, 10, and 



888 van den Berg, ten Seldam, and van der Gulik 

100) are used in the transformation ~--. z/L only, then the dashed lines in 
Fig. 5b are obtained. From these approximate solutions it can also be seen 
that the axial conduction for Pe > 10 can be ignored as far as practical 
purposes are concerned. 

4. APPLICATION 

Finally, it will be shown that, conditionally, the thermal effects in a 
compressible capillary flow are significant. For the mean reduced tem- 
perature, it follows from Eq. (63) that the difference between the mean 
asymptotic real temperature T(oe) and the wall temperature To is given by 

2 t/~ ~n~ 
T(oo) -  T o -  3 ~ - -  (2Toc~- 1) (69) 

or, in terms of the Eucken factor Eu = 2/t/C v, by 

T ( o o ) - T 0 -  22T~ ~2n~ 
3 EU Cv 

(70) 

where ~ is the thermal expansion coefficient of the fluid, Eq. (11 ), and /'linc 
the mean flow velocity for an incompressible fluid in the same external cir- 
cumstances, Eq. (23b). From these formulas one can calculate that the net 
thermal effect in a capillary flow is, in general, very small, i.e., of the order 
of a few millikelvins. This justifies the current assumption that the flow is 
isothermal. For liquids, where the compressibility parameter C ~ 1 so that 
only viscous heating occurs, the effect even turns out to be positive. 
However, for a capillary flow of a fluid near the gas-liquid critical point, 
the premise of an isothermal flow is no longer maintainable. This is the 
main conclusion of this paper. To support this statement, we have 
calculated the thermal effect and the corresponding entry length according 
to Eqs. (66) and (69) for a flow of ethylene at a series of densities along two 
supercritical isotherms, viz., at 298.15 and 283.65 K. The critical parameters 
of ethylene are as follows: temperature Tc= 282.35 K, pressure 
pc=5.040 MPa, and density pc=7.634kmol .m -3. A constant value of 
0.1 MPa is taken for the pressure difference Ap over the capillary. 

The values of the transport coefficients t/ and 2 are derived from 
formulas given by Holland et al. [-15] for pressures to 50 MPa, where the 
contribution to the thermal conductivity owing to the critical enhancement 
has been included. For the calculation of the quantity c~, the compression 
factor Fo from Eq. (21) and the specific heats (~v and Cp, the two IUPAC 
equations of state developed by Jacobsen et al. [16] have been used in and 
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outside the critical region, respectively. Since these two equations of state 
do not adjoin completely, we have corrected the calculated values slightly 
by applying a blending function. The mean velocity flint has been found 
from Eq. (23b), where use is made of the practical dimensions of a capillary 
as given by van den Berg etal. [6] in a description of a capillary 
viscometer: R/L = 5 x 10-5, R = 0.04 mm. Since the viscosity increases with 
the density along the isotherms, the mean velocity t~inc for the present 
capillary decreases from about 2.6 m-s  i at low densities to 0.37 m.  s -1 at 
p =  16kmol -m -3. The Reynolds number varies between about 125 and 
1050, and the Peclet number between about 175 and 23000, where the 
latter value is reached at the critical density on the nearly critical isotherm 
at 283.65 K, i.e., 1.3 K above To. The calculations demonstrate that, 
approaching the critical point, the parameter C and the specific heat Cp 
diverge more strongly than A/t/(or Eu- Cv), implying a substantial cooling 
of the flowing fluid which evolves over a drastically increased entry length 
AL-r. These effects are illustrated in Fig. 6, where the net thermal effect and 
the relative entry length are shown as a function of the density for the two 
isotherms. At 298.15 K (dashed curves) the largest thermal effect is 11 mK 
with an entry length of nearly 9 % of the total length of the capillary. At 
283.65 K (solid curves) these figures increase to 105 mK and 72%. It 
should be pointed out here that, due to the dependence of the thermal 
effect T (oo ) -T o  on the square mean velocity as given by Eq. (69), this 
effect is proportional to (Ap) 2 at a given temperature and density. 

1 
ethy[ene 0.75 

0.50 --- 
0.25 "J <3 

0 0 

v - 2 5  
E -50 283.65K 

98.15K 
~o -75 

I~  -1 O0 

-125 
0 /, 8 12 16 

density, kmol.m "3 
Fig. 6. The thermal effect "T(oo)-T0 and the relative entry 
length 3LT/L versus the density for a compressible capillary flow 
of ethylene at two supercritieal temperatures. The pressure 
difference over the capillary is 0.1 MPa and the dimensions are 
R/L=5 x 10 -5 and R=4x 10-5 m. 
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With the above-mentioned capillary viscometer [6], we have per- 
formed measurements on ethylene. The corresponding experimental results 
will be given in a forthcoming paper, where it also will be shown that the 
maximum correction on the calculated viscosity due to the thermal effects 
amounts to about 2 %. This refers to a net thermal effect of - 1 6  mK in a 
flow at a temperature 1.3 K above To, with a mean density Pc, under a 
mean pressure difference over the capillary of about 0.04 MPa, which leads 
to a density range around Pc of nearly 30 %. 

5. CONCLUSIONS 

In the final conclusions about the thermal effects appearing in a 
capillary flow, as derived in this paper, a speculation on the impact of the 
assumptions made in Section 2 may not be missed, in particular, of those 
that claim that the pressure in the capillary is a function only of the axial 
coordinate z and that the radial velocity ur is zero. Concerning the validity 
of these assumptions, it should be pointed out here that in Ref. 1 it is 
shown that, in the isothermal case, the assumption ~p/~r = 0 actually was 
tacitly dropped by the introduction in Eq. (14a) of the constant C3, which 
is of the second order in the ratio R/L. It was also found that the ratio of 
pressure gradients [~p/O(r/R)]/[~p/~(z/L)] is of second order and, 
apparently contradictory, that the ratio of the radial and axial velocity 
components Ur/U~ is of third order and hence negligible if only second-order 
terms are taken into account. Thus even if there may exist a small radial 
pressure gradient, the radial velocity component may be safely ignored. 
Therefore, in the present paper the assumption is made, though its validity 
cannot be ascertained yet, that also in the nonisothermal case the radial 
velocity Ur is negligible and hence as well radial heat transport by 
convection. 

Furthermore, it is obvious that for nearly critical circumstances, the 
assumption of an isothermal fluid flow, as made in Ref. 1, must be 
abandoned. For these circumstances, accounting for the thermal effect may, 
presumably, result in a significant increase in the compression factor and, 
consequently, in an additional nonnegligible term in the working equation 
for a capillary viscometer. That implies that for those circumstances and 
under thc assumptions of a parabolic velocity profile and a constant axial 
pressure gradient, the results outlined here are only an estimate for the 
magnitude of the thermal effects. However, this estimate is most likely very 
reasonable in view of the fact that the velocity profile does not deviate too 
much from the parabolic profile for an appreciably compressible flow, as 
shown in Ref. 1. If the exact results are required, then the equations of 
motion, Eq. (8), and energy, Eq. (10), must be solved simultaneously, of 
course, without the two additional assumptions. 
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APPENDIX: BESSEL FUNCTIONS 

The zero- and first-order Bessel functions Jo(x) and JI(X) satisfy the 
relations 

Jo(x) =-1 Jl(x) + J'l(x) ( A 1 )  
x 

Jl(x) = -J'o(X) (A2) 

Applying these relations on In(c0 defined by 

In(o~ ) = x"Jo(o~x ) dx for n = 1, 2,..., (A3) 

where e is a zero of Jo(x), the following recursion formulas can be derived: 

11 =-1 J1(~ ) 

1 4(n  - 1 ): 
12n_ 1 = - J l ( ~ )  ~ 12n_ 3 for n=2 ,  3 .... 

(A4) 

The modulus of Jo(~X) is given by 

xJ ( x) dx = (A5) 
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